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1 Vectors, vector spaces

1.1 Motivation

Consider a system of linear equations

x + 2y − z = 1
2x + 5y = 9
3x + 6y − 2z = 6

. (1)

To solve the equation (1) means to find numbers x, y, z which satisfy all the
equations of the system.

How to expres the system using matrices or vectors
The system can be expressed in matrix form: 1 2 −1

2 5 0
3 6 −2

∣∣∣∣∣∣
1
9
6

 . (2)
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The matrix (2) is called the augmented matrix of the system (1).
Notice that the system (1) can be also expressed using a “linear combination”

of “arithmetic vectors”, that is,

x

 1
2
3

+ y

 2
5
6

+ z

 −1
0
−2

 =

 1
9
6

 .

1.2 Arithmetic vector space

Definition 1 (Arithmetic vector space). By Vn, n ∈ N, we denote the arith-
metic vector space. It consists of ordered n-tuples of real numbers, i. e.

Vn = {(a1, . . . , an) | a1, . . . , an ∈ R}.

Elements of Vn we call vectors. We define a sum of two vectors and multipli-
cation of a vector by a (real) number:

sum (a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn),
multiplication r (a1, . . . , an) = (r a1, . . . , r an).

We denote vectors by bold letters as a, b etc.
The vector o = (0, . . . , 0) we call a zero vector, a vector−a = (−a1, . . . ,−an)

we call the opposite vector to a = (a1, . . . , an).

1.3 Vector space

We can define a vector space in a more general sense.

Definition 2 (Vector space). Nonempty set V with operations u + v ∈ V,
a sum of elements u,v ∈ V, and r u ∈ V, a multiplication of u ∈ V by a real
number r, we call the vector space if, for all u,v,w ∈ V, and r, s ∈ R, the
following conditions are satisfied:

1. u + v = v + u;

2. u + (v + w) = (u + v) + w;

3. there exists o ∈ V such that u + o = u;

4. r(u + v) = r u + r v;

5. (r + s)u = r u + su;

6. r(su) = (r s)u;

7. 1 u = u, 0 u = o.

Elements of V we call vectors, the element o we call the zero vector.

1.4 Linear combination

Definition 3. Let u,u1, . . . ,uk be vectors, r1, . . . , rk real numbers and

u = r1 u1 + · · ·+ rk uk.

Then we say that the vector u is a linear combination of vectors u1, . . . ,uk with
coefficients r1, . . . , rk.
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1.5 Linear independence and dependence

Definition 4. We say that vectors u1, . . . ,uk are linearly independent if the
following condition holds:

whenever r1 u1 + · · ·+ rk uk = o, then r1 = r2 = · · · = rk = 0.

If the vectors are not linearly independent we call them linearly dependent.

Remark 5. • If one of the vectors u1, . . . ,uk is a zero vector then they are
linearly dependent.

• One vector u is linearly dependent if and only if it is a zero vector.

• Two vectors u, v are linearly dependent if and only if one of them is a
constant multiple of the other.

1.6 Linear span

Definition 6. The set of all linear combinations of given vectors u1, . . . ,uk,
that is, the set of all u = r1 u1 + · · · + rk uk, we call a linear span of vectors
u1, . . . ,uk. We denote it by 〈u1, . . . ,uk〉. Vectors u1, . . . ,uk we call generators
of the linear span 〈u1, . . . ,uk〉. We also say that vectors u1, . . . ,uk generate
the linear span 〈u1, . . . ,uk〉.

2 Elementary operations with vectors

2.1 Collection of vectors

Definition 7. By a finite collection of vectors [u1, . . . ,uk] we mean vectors
u1, . . . ,uk, where some of them may be equal.

In contrast to a set, a collection can contain the same element more times.
For example, from the set of vectors {a,b} we can make collections [a,b],
[a,a,b], [a,a,b,a,b,b]. From the collection of vectors we can select the
set which contains all its vectors, e. g. from the collection [a,a,b, c, c] we select
the set {a,b, c}.

2.2 Elementary operations

Definition 8. Under an elementary operation with a collection [u1, . . . ,uk] we
understand one of the following operations:

1. interchanging vectors in the collection;

2. multiplying arbitrary vector by a nonzero constant;

3. adding a constant multiple of a vector to another vector;

4. removing a zero vector from the collection, provided it is not the only
vector in the collection;

5. removing a vector from the collection whenever the collection contains
another vector which is its multiple.
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Theorem 9. Applying any of elementary operations (1)–(5) to a collection
of vectors we obtain a collection which generates the same linear span as the
original collection.

It is useful to introduce matrices.

Definition 10. A matrix A of type (m,n) we call a rectangular array of mn
real numbers in m rows and n columns,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 .

A matrix A is called a zero matrix if it contains only zero entries, that is,
aij = 0, i = 1, . . . ,m, j = 1, . . . , n. We denote a zero matrix by O.

2.3 Equivalent matrices

Definition 11. Two matrices A, B are called equivalent if the linear span
generated by rows of the matrix A is the same as the linear span generated by
rows of the matrix B. Then we write A ∼ B.

Remark 12. It immediately follows from Theorem 9 that applying any of ele-
mentary operations (1)–(5) to rows of a matrix A we obtain a matrix which is
equivalent to A.

2.4 Gaussian matrix

Definition 13. We say that a nonzero matrix B is a Gaussian matrix if the
first nonzero number of any of its rows (considered from left to right) is the
last nonzero number of any of its columns (considered down from top). This
number is called the leading entry of the corresponding row.

Remark 14. A Gaussian matrix is also called a matrix in row-echelon form.

Example 15. The following two matrices are Gaussian matrices
1 −2 0 4
0 5 0 0
0 0 2 −3
0 0 0 5

 ,

 1 0 0 0 0
0 0 0 2 0
0 0 0 0 1

 .

The matrix 1 1 0 0 0
0 1 0 2 0
0 1 0 0 1


is not a Gaussian matrix.
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2.5 Rank of the matrix

Definition 16. Under the rank of a nonzero matrix A we understand the max-
imal number of the linearly independent rows of the matrix A which generate
the same linear span as all rows of the matrix A. We denote it by h(A). For a
zero matrix we put h(O) = 0

Theorem 17. A Gaussian matrix B has linearly independent rows. Conse-
quently, h(B) is equal to the number of its rows.

Theorem 18. Let A be a nonzero matrix. Then there exists a Gaussian ma-
trix B such that A ∼ B.

Proof. The assertion follows by the Gaussian elimination which will be described
later.

Theorem 19. Let A be a nonzero matrix. Let B1, B2 be two Gaussian ma-
trices such that A ∼ B1 a A ∼ B2. Then both matrices B1, B2 have the same
number of rows which is equal to h(A).

2.6 Gaussian elimination

Method of Gaussian elimination (in this context) is based on clever application
of elementary operations (1)–(5) with rows of the matrix A.

Here is a systematic way how to do it:

1. Start by obtaining 1 in the top left corner. Then obtain zeros below that 1
by adding appropriate multiples of the first row to the rows below it.

2. Next, obtain a leading 1 in the next row, and then obtain zeros below
that 1.

3. At each stage make sure that every leading entry is to the right of the
leading entry in the row above it — rearrange the rows if necessary.

4. Continue this process until you arrive at a Gaussian matrix.

(Instead of the number 1 we can have any nonzero number.)
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